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ALLOCATION FOR AUTHORIZATION MANAGEMENT

Introduction

This paper explains the method proposed by B-K Dynamics, Inc. for opera-

tionally calculating and allocating manpower and personnel authorizations in the

U.S. Navy. We are concerned with an allocation which is intended to be a useful

forecast of actual personnel assignments two years in the future. This proposal

incorporates many of the known important considerations, including:

(i) predicted availability of personnel of various pay grades within each

co m m unity;

(ii) approved allowances by rating and by qrade for each Unit Identification

Code (UIC);

(iii) equity among UIC's of equal priority;

(iv) relative priorities associated with e;ich UIC;

(v) directives that (for certain special UIC's, called "C N 0 Priority-1

UIC's") authorizations must agree exactly with allowance:';; and

(vi) substitution (within a rating) of one grade for another, when necessary

(minimizing both the number of such substitutbons and the grade-

differences involved).

V
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In putting forward these proposals, B-K is acutely aware of several other factors,

which are important in themselves and could indeed be crucial to the success

and usefulness of the entire Authorization Management System, but which do

not form a part of the allocation procedure as we describe it herein. Among those

factors are the following:

(i) the division of all personnel among "distributable com munities"

-which are often either designators or NOBCC -- each of which is assumed

to be completely homogeneous and completely disjoint from all

the others;

(ii) the numerical approved allowances by grade within each distributable

co mmunity, which are simply taken as inputs by our procedure; and

(iii) the numerical prediction of available personnel by grade within

each distributable com munity, which are again simply taken as inputs

by our procedure.

Each of the "approved allowances" and "available personnel" are predictions as

of some specific date - typically about 24 months after the time when the calculations

are performed.

For expository reasons, this paper will describe a succession of allocation problems,

C' beginning with the simplest quantitative apportionment problem and successively

introducing the cumplicating factors. We shall give a brief verbal description,

and an example, of each portion of our procedure.
0V
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1 . The Quantitative Apportionment Problem

This problem is deceptively easy to state: we wish to "divide a given whole

number into integral portions, which shall stand as nearly as possible in the same

respective proportions as a given set of numbers." The phrase "as nearly as possible"

ad m its a wide variety of different interpretations, and several of the most natural

interpretatinns have been found to produce results which possess serious flaws.

Because of the requirement in the U.S. Constitution that each state shall have

a number of representatives in the Congress proportional to its population, the

above problem has received much attention -- political, legislative, and (more

recently) mathematical - over the last two hundred years. Ref. CQ M Al provides

a fascinating sum mary of this history, and refs. LN M C 3 andCQ M N U present some

more recent results. Appendix I of this paper describes some of the flaws mentioned

above, and describes several of the most reasonable interpretations of the phrase

"as nearly as possible"; we merely rem ark here that the demand for "equity am ong

UIC's of equal priority" can also be interpreted in several ways, corresponding

to various possible "methods" of legislative apportionu ient; that the methods

known as "Quota" methods avoid the most serious difficulties; and that the several

known Quota methods have each their own idiosyncrasies in the context of th3

manpower-allocation problem. We shall refer to "the quota" of a particular UIC

as a definite number, calculated from the total to be apportioned and the proportions

to be employed; we defer until Appendix HI below the question of exactly which

quota method will be used at each stage of our procedure.

-3-
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2. Lower and Upper Limits on the Quotas

Many apportiornment methods permit a minimum and a maximum to be

imposed on the portion allocated to each UIC, over-riding the requirement for

proportionality or "fair share". Phase I of our allocation procedure is to compute

each UIC's modified fair share of the total personnel available in the distributable

corm munity, imposing minima to ensure that each UIC receives at least one man

if possible.

3. Quantitative Apportionment with Relative Priorities

In case relative priorities can be assigned to the various UIC's which are

to share the resources of some corm munity, we further modify the notion of "fair

share", taking now the ideal ratios as proportional to the respective allowances '/

multiplied by the respective priorities. (We shall retain the condition that, whenever

possible, each UIZ sh.ould receive at least one man from the com munity.) Thus,

if some UIC has an allowance of 10 slots and a priority of 1.3, while a second

UIC has an allowance of 6 slots and a priority of 1.1, the allocation would be reckoned

as if they had allowances of 13.0 and 6.6 respectively.

V
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4. Prohibition of Over-Manning in Under-Manned Cornm unities

Compliance with existing U.S. Navy personnel assignment policies requires

that two additional considerations be taken into account at this stage of our procedure:

first, if the cor munity as a whole is not over-manned, then no UIC is to be over-

manned; and, second, if the corn munity as a whole is over-manned, the relative

priorities are to be disregarded in the quantitative allocation. If analogous methods

are considered for use in manpower and personnel planning by other organizations,

it seems likely that the first of these rules would generally be retained, but the

second is perhar's more specifically tailored to the Navys situation; in any case,

these two constraints help to ensure that high priorities for important UIC's will

not cause such undesirable effects as ships being crowded with more men than

can be effectively utilized, or even bunked.

5. Special "CNO Priority-1i" UIC's

The last factor which we shall consider, as an influence on the initial quantitative

allocation, is the special treatment accorded to UIC's denoted "C NO Priority-

1". Those UIC's must have exactly 100% manning, by numbers and by grade, regardless

of the impact on other UIC's. In Phase I, if sufficient men are available in the

com munity as a whole, the correct total number of mea is withdrawn from the

quantitative allocato.i process; if sufficient men are not available, we thenceforth

disregard the special status of those UIC's, and use their allowances and relative

priorities to compute a quantitative allocation in the ordinary way.

-5-
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Sections 1 to 5 above have completed the description of Phase I -- the

Quantitative Allocation Phase -- of our allocation process. To sum marize: within

each distributable corn munity, the C N 0 Priority-I UIC's are given their exact

allowance if possible; if the cornm unity is not over-m anned, the total remaining

available personnel are allocated among the other UIC's, with the quota of each

determined by the product of its total allowance by its relative priority, subject

to over-riding minima of one man per UIC if possible and maxima equal to the

allowances; if the corn munity is over-m anned, the total remaining available personnel

are allocated among the other UIC's with quotas determined by allowances only.

6. Computation of Pro-Rated Allowances (PR A)

The next step is to pro-rate the quantitative allocations of each UIC among

the pay grades. This is done by multiplying the approved allowances for a UIC

by its '"fill-ratio" - the ratio of its quantitative allocation to its total allowance.

Thus a UIC whose allocation was exactly equal to its total allowance would have

a fill-ratio of 1.00 (or 100%), and its pro-rated allowances (p.r.a.) would be equal

to its approved allowances; a UIC which was allocated, from some corn munity,

only 10 men against a total allowance of 15 slots, would have fill-ratio of 10/15

= 2/3, and its pro-rated allowances would be two-thirds of its approved allowances;

a UIC which was allocated 12 men against allowances of 10 slots would have a

fill-rate of 1.20 (or 120%), and its pro-rated allowances would be 1.20 times its

approved allowances. (The fact that these p.r.a. numbers will generally not be

integers is not a problem, since we do not intend to actually allocate those numbers

of men -the aggregate grade-distribution of the p.r.a. is unlikely to exactly match

the grade-distribution of available men anyway -- but merely to use them as a

-6-



measure of the relative entitlement of the various UIC's for men of the various

grades.)

Instead of considering the allowances for the various grades separately,

we accumulate them before we pro-rate them. Table I presents the detailed computations

for a UIC with 2/3 fill-ratio and an allowance of 15 slots, distributed as shown

over grades. In particular, this UIC has an allowance of 4 slots at the G-3 level,

and 7 slots at grade G-3 or higher; the 2/3 fill-ratio, applied to those 7 slots, gives

a cumulative pro-rated allowance (c.p.r.a) of 4.67 slots at grade G-3 or higher,

and a pro-rated allowance of 2.67 slots at grade G-3.

When we perform the computations as indicated by the table, we find that

the sum of the pro-rated allowance figures in the last column is exactly equal

to the total allocation for this UIC; thus we may disregard small round-off errors.

Other advantages of working with the cumulative allowances will be seen in later

sections.

The calculations described in Section 6 constitute Phase II of our proposed

procedure.

"-7-!
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Cumulative
Pro-Rated (P.R.A.)

Pay Approved Cumulative Allowances Pro-Rated
Grade Allowance Allowance (C.P.R.A.) Allowances

G-7 0 0 0.00 0.00

G-6 1 1 0.67 0.67

G-5 1 2 1.33 0.66

G-4 1 3 2.00 0.67

G-3 4 7 4.67 2.67

G-2 4 11 7.33 2.66

G-1 4 15 10.00 2.67

TABLE I

Calculation of Pro-Rated Allowances
For Hypothetical UMC

-8-
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7. Grade Allocation for CNO Priority-i UIC's

Having settled in Phase I the question of how many men each UIC

shall receive, and in Phase II decided the UICs' relative entitlement

to men of various grades, we proceed to determine the grade-distribution

of the men to be allocated to each UIC. We do this in successive stages,

first allocating men to fill the pro-rated allowances of highest grade,

then allocating men to fill the residue of the p.r.a. for the two highest

grades, continuing thus until we finally fill the residue of the p~r.a.

for all grades. (At that point, since the allowances were pro-rated

so that the total p.r.a. equals the total of the men available, we will

find that the available men are exactly used up.)

However, before we begin the detailed work of fairly sharing the

men of various grades among the competing UIC's, we consider any CNO

Priority-1 UIC's which received fill-ratio 100% in Phase I; they should

receive exactly the numbers of men of each grade specified in their

approved allowances. If this is possible, we assign the correct numbers

of men of each grade, and exclude those men and those UIC's from the

remainder of the entire allocation-process; but if an exact grade match

is not possIble for all those UIC's, we disregard their special status.

(In this latter case, we base their grade-mix purely on their qualitative

priorities, as described below.

-9-
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KI

Pay Grade

G-7 G-6 G-5 G-4 G-3 G-2 G-1 Total

UIC #1
Kr*Priority 1.10

*Allowance 1 0 1 2 1 3 2 10
Cum. Allow. 1 1 2 4 5 8 10
C.P.R.A 0.80 0.80 1.60 3.20 4.00 6.40 8.00
P.R.A. 0.80 0.00 0.80 1.60 0.80 2.40 1.60 8.00
Cum. Aloc 1 1 2 3 4 5 8
Aloc. 1 0 1 1 1 1 3 8

UIC #2
*Priority 1.50
.Allowance 0 1 2 1 4 7 5 20

Cum. Allow. 0 1 3 4 8 15 20
C.P.R.A 0.00 1.00 3.00 4.00 8.00 15.00 20.00
P.R.A. 0.00 1.00 2.00 1.00 4.00 7.00 5.00 20.00
Cum. Aloc. 0 0 3 3 7 13 20
A1oc. 0 0 3 0 4 6 7 20

UIC #3
S *Pri ori ty 1.00

• Allowance 0 1 1 2 3 4 3 14
I.Cum. Allow. 0 1 2 4 7 11 14

C.P.R.A 0.00 0.79 1.57 3.14 5.50 8.64 11.00
P.R.A. 0.00 0.79 0.78 1.57 2.36 3.14 2.36 11.00
Cum. Aloc. 0 0 1 3 5 7 11
Aloc. 0 0 1 2 2 2 4 11

Total
(All UICs)

Allowance 1 2 4 5 8 14 10 44
Cum. Allow. 1 3 7 12 20 34 44
C.P.R.A 0.80 2.59 6.17 10.34 17.50 30.04 39.00
P.R.A. 0.80 1.79 3.58 4.17 7.16 12.54 8.96 39.00
Cum. Aloc. 1 1 6 9 16 25 39
Aloc. 1 0 5 3 7 9 14 39

*Available 1 0 5 3 7 9 14 39
Cum. Available 1 1 6 9 16 25 39

C,

TABLE II

Example Illustrating

o Allocation Procedure

Notes: Asterisks denote data input to the procedure; the "allowances" are numbers
of manpower slots to be filled; "C.P.R.A" denotes cumulative prorated
allowances (see text); "aloc." denotes men finally allocated by the process;
"totals" are obtained by summing over UICs; a UIC is a Naval installation,
identified by a "unit identification code." See text for details.
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8. Non-Integral Grade-by-Grade Allocation

At each stage, we apply the highest-grade men against the highest-grade

p.r.a. not already filled; in effect, we place the p.r.a. in descending grade sequence,

place all the available men in descending grade sequence, and match up those

sequences -- highest man to highest p.r.a. and lowest man to lowest p.r.a. Unfortunately,

this conceptually elegant process does not complete the actual allocation of men

to slots; as mentioned above, the p.r.a. are in general not integers. We may regard

this non-integral allocation as a provocative proposal, like King Solo m on's proposed

division of the child equally between the two women, which precedes and facilitates

a realistic and equitable solution. Quota procedures prove to be unnecessary in

converting this proposal into the required integral allocation.

To clarify the procedure so far, we present an example involving three

UIC's whose allowances and priorities are given in Table II. The basic input data

of the problem - including the available resources - are indicated with asterisks;

the other numbers given there are intermediate results.

Numerical results applicable to those three UIC's will be given as triples

of numbers; thus the relative priorities are (1.10, 1.50, 1.00) and the allowances

are (10, 20, 14), so that the 39 available men must be allocated in proportion to

the products (11.00, 30.00. 14.00). Exact proportionality would give (7.80, 21.27,

9.93) but UIC #2 must not receive more than its allowance in this undermanned

corn munity, so we give it 20.00 and share the remainder, producing the exact

quotas (8.36, 20.00, 10.64); a quota process then produces quantitative allocations

C0 of (8, 20, 11), completing Phase I of the example.

S.....11-
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Grades of Available Men

G-7 G-6 G-5 G-4 G-3 G-2 G-1 Total

G-7 0.80 0.80

G-6 0.20 1.59 1.79
0

o G-5 3.41 0.17 3.58

G-4 2.83 1.34 4.17

G-3 5.66 1.50 7.16

G-2 7.50 5.04 12.54
SG-1 8.96 8.96

Total 1.00 0.00 5.00 3.00 7.00 9.00 14.00 39.00

TABLE III

Non-Integral Allocation of Available Men
SAgainst Pro-Rated Allowances

Grades of Available Men

G-7 ŽG-6 =G-5 ŽG-4 ŽG-3 =>G-2 ŽG-1

G-7 0.80 0.80 0.80 0.80 0.80 0.80 0.80
U

Si>G-6 1 1 2.59 2.59 2.59 2.59 2.59
X

GG-5 1 1 6 6.17 6.17 6.17 6.17

G-4 1 1 6 9 10.34 10.34 10.34
VI

I _G-3 1 1 6 9 16 17.50 17.50

S->G-2 1 1 6 9 16 25 30.04
> G- 1 1 6 9 16 25 30.04

4J >G1 1 1 6 9 16 25 39.00
0 via

TABLE IV

Non-Integral Allocation of Cumulative Available Men
Against Cumulative Pro-Rated Allowances

C) -12-
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The cumulative allowances are then pro-rated, giving the rows

labeled "C.P.R.A." in Table II; for UIC #1, the Cum. Allowances are

multiplied by 8/10, for UIC #2 the Cum. Allowances are multiplied by

20/20, and for UIC #3 they are multiplied by 11/14. Then the "P.R.A."

rows -- the pro-rated allowances -- are computed by differencing the

preceding rows, and Phase II of the example is completed.

Now we attempt to match the sequence of total pro-rated allowances

(in decreasing grade sequence) to that of the available men. We see

from Table II that there are P.R.A.'s of 0.80 for G-7's, 1.79 for G-

6's ... , 8.96 for G-1's, totalling 39.00 slots, and 1 available G-7,

1 G-6, ... , 14 G-1's (also totalling 39, of course). We allocate 0.80

of the top man to the P.R.A. for G-7's, the other 0.20 of him to the

P.R.A. for G-6's, and fill che remaining 2.59 G-6 slots with available

G-5's. The other 3.41 of the G-5's are appointed to fill G-5 slots,

and the remaining 0.17 G-5 slot must be filled with G-4 men. Continuing

in this way, we fill in Table III.

Table IV expresses the same information as Table III, but both

grades of available men and grades of pro-rated allowances are cumulated,

as indicated in the marginal labels for the rows and columns. Although

Table III is easier to understand, Table IV is much easier to compute,

as can easily be seen.

-13-
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9. Integral Grade-by-Grade Allocation

Next we produce integral grade-by-grade allocations (which can actually

be implemented), by simply rounding each entry in the Cumulative Non-Integral

Grade-by-Grade Allocation array to the nearest integer. (For our example, we

round Table IV to get Table V.) The result is then differenced to provide an Integral

Grade-by-Grade Allocation, which shows how many men at each grade will be

used to fill slots at each grade. (In the example, Table V is differenced to give

Table VI, which reveals, for instance, that none of the available G-4's will be used

to fill a slot at either the G-3 or G-5 level, but that 2 of the 8 slots at grade G-3

will be filled by G-2's.)

These calculations conclude Phase III. (Note that some of the entries in

Table II have not yet been explained.)

10. Allocation of Men by Grade to UIC's

As mentioned above, we employ a sequence of several Quota apportion-

ments to allocate men to the UIC's by grade. We do this by following the path

of non-zero entries in the Integral Grade-by-Grade Allocation array from top

left to bottom right; each such entry involves a separate stage of the computation,

and an additional Quota apportionment. At each stage, the allocations of men

to UIC's in the previous stages are taken as minima (considered as already corn mitted),

while the total allocations (as computed in Phase I) are taken as maxima, with

the cumulative pro-rated allowances (down to the grade-level of the slots being

-14-



178/6
Grades of Available Men

G-17 G-6 G-5 G-4 G-3 G-2 G-1

G-7 1 1 1 -1

G-6 1 1 3 3 3 3 3
4J0

IL G-5 1 1 6 6 6 6 6

0. G-4 1 1 6 9 10 10 10

- U G-3 1 1 6 9 16 18 18

G-2 1 1 6 9 16 25 30

G-1 1 1 6 9 16 25 39

TABLE VIntegral Allocation of Cumulative Available Men

against Cumulative Pro-Rated Allowances

Grades of Available Men

G-7 G-6 G-5 G-4 G-3 G-2 G-1 Total

G-7 1 1
CD G-6 2 2

G-5 3 3
4u

G-4 3 1 4

G-3 6 2 8

G-2 7 5 12

o G-1 9 9S-

Total 1 0 5 3 7 9 14 39

TABLE VI

Integral Allocation of Available Men

against Pro-Rated Allowances
Grades

G-7 G-6 G-5 G-4 G-3 G-2 G-1 Total
UIC #1

Cum. Aloc. 1 1 2 3 5 5 8
Aloc. 1 0 1 1 2 0 3 8

UIC #2
Cum. Aloc. 0 0 3 4 8 14 20
A1c. 0 0 3 4 6 6 20

UIC #3
Cum. Aloc. 0 0 1 2 5 6 11
A1oc. 0 0 1 1 3 1 5 11

TABLE VII
C) Effect of Qualitative Priority Factor

-15-



filled) taken as the basis for proportionality. The sequential nature of this computation

guarantees that, if a UIC happens to gain a fraction of a man in one stage, it will a

tend to lose a fraction in the succeeding stage, and vice versa. In this way we

exploit the information in the Non-Integral grade-allocation matrix represented

for our example by Table IV.

Continuing with the example begun above, we see from Table VI that one

man of grade G-7 fills one slot of the same grade. From Table II we see that

the three UIC's have respectively (0.80, 0.00, 0.00) slots at grade G-7; thus the

one G-7 man goes to UIC #1.

The next entry in Table VI tells i that 2 G-5 men are to be assigned against

pro-rated allowances of grade G-6. Table II gives C.P.R.A.'s, at grade G-6 and

above, as (0.80, 1.00, 0.79) for the three UIC's, and we perform a second Quota

computation which allocates these first three men as (1, 1, 1) - one to each of

the UIC's. In othe- words, those two G-5 men have filled one G-6 slot in UIC

#2 and one G-6 slot in UIC #3.

The third entry in Table VI shows 3 G-5 men assigned to fill slots at the

G-5 level. The new Quota computation partitions 6 men (the three previously

allocated, and the three new men) against the total P.R.A.'s for G-5 and above

- of which there were (1.60, 3.00, 1.57) in the three UIC's. There is a clear though

slight preference for assigning the sixth man to UIC #1 rather than to UIC #3,

so the cumulative assignment is (2, 3, 1), and we see that one of those last three

G-5's was assigned to UIC #1 and the other two to UIC #2.

L -16-



As these computations proceed, we successively fill in the rows of Table

II labelled "Cumulative Allocation"; of course, when we reach the last cell of

Table VI we are assigning the last of the G-1 men to the last remaining slots,

so the final entries in the "Cum.Aloc." row agree with the original result of Phase

I -- the quantitative allocation to the UIC's.

Finally, the "Allocation" rows in Table II are found by differencing the

preceding rows. This concludes the major portion of Phase IV.

It has seemed reasonable to modify the process described above in one

other respect, by introducing the notion of "Qualitative Priority". The purpose

of this last twist in the complicated path is to ensure that, if a UIC happens to

be deprived of a fraction in the quantitative allocation, it will be given the henefit

of any flexibility of grade-allocation in Phase IV.

Instead of using the C.P.R.A. (cumulative pro-rated allowances) as the

basis for proportionality in the successive stages of Phase IV, we shall use the

products of those C.P.R.A.'s with a Qualitative-Priority factor, which is the square

of the ratio of the original basis for proportionality (the product of Allowance

by Priority) to the quantitative allocation actually made in Phase L
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In our example, the Phase-I pr6portions were (11, 30, 14) while the Phase-

I allocations were (8, 20, 11); thus the qualitative-priority factors are the squares

of (11/8, 30/20, 14/11) -- approximately (1.89, 2.25, 1.62), showing that Phase

I treated UIC #3 relatively well, while UIC #2 was penalized by its not being permitted

to exceed its allowance of 20. Incorporating this factor into our computation,

the Allocation rows of Table VII result. Note that the allocations of Table II are

changed slightly - both UIC #1 and UIC #2 are slightly upgraded, while UIC #3

is somewhat downgraded.

We should note that, generally, the effect of the qualitative priority factor

is this: a UIC which gained a fraction in Phase I will tend to have each of its pro-

rated allowances filled with the lowest grade of man who fills any slots at that

grade, while a UIC which lost a fraction in Phase I will tend to have each of its

pro-rated allowances filled with the highest grade of man who fills any slots at

that grade level.

Sections 10 and 11 constitute Phase IV, the final phase of our proposed

allocation-process.

Z
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12. Which Quota Method?

As mentioned above, references LQMA] and [QMNU] have introduced

new methods of apportionment, in addition to those previously described

and investigated in refs. [MTAR3 , [ARCJ , and earlier works (ref. QMA

has a bibliography of earlier methods.)

For reasons given above, we recommend that the MFQ ("Major Fractions

Quota") method be used in the quantitative-allocation phase; it lies

midway between the two most extreme of the new Quota methods, and thus

can justify the claim that it does not tend to favor either the smaller

UIC's or the larger. (For example, the Quota method of •MA, called

Primal Quota herein, if used to allocate a slightly undermanned community

would conclude that many -- perhaps all-- of the UIC's were tied for

their last man; thus a community with one man short would receive no

guidanre at all as to which UIC should be deprived of a man. Similarly,

the Dual Quota method if used for a community which was slightly overmanned,

would find so many ties that it would be of little value.) MFQ has

at least the advantage that it will be as distant as possible from both

those risks.

When Phase IV is performed, we recommend that the Dual Quota method

be employed for guiding the grade-allocation among UIC's. Under the

Dual Quota method, every UIC will be tied for the first man to be allocated,

and there will be a strong tendency for every UIC to receive one man

before any receives its second (though that tendency will not overcome

a large discrepancy in the ideal ratio of their manning.) As a result,
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when the higher-grade availables are allocated (prior to the lower-grade

A .availables) there will be a tendency for each UIC to receive at least

one man at the highest grade which occurred in its allowance; this will

have the desirable consequence that the "team leader", or highest-grade

slot in an UIC, will tend to be filled with a man of the appropriate

grade. The attractiveness of this result, in the context of a team

of specialists, is evident, and would conform with a policy goal in

the allocation of U.S. Navy enlisted men.

For these reasons we propose that Dual Quota should be used for

Phase IV of the above procedure, even though MFQ is used in Phase I.

The detailed algorithms for both Dual Quota and MFQ are given

above.

13. Conclusion

This paper has proposed a procedure for allocating available Naval

manpower resources to requirements, in case where the tasks are all

similar in nature, but where a hierarchy of skill-- or training-levels

exists. The procedure depends on the availability of one or more appropriate

A mapportionment methods, such as have been recently developed for legislative

apportionment, The qualitative acceptability of the procedure is currently

being evaluated in trials which are performing the computations necessary

to allocate the Navy's entire enlisted force.
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APPENDIX I

METHODS OF APPORTIONMENT

1.1 The Apportionment Problem

The apportion m ent problem is to divide a given integer h, called the houseI

into s integral portions al, a2, ... , as, respectively proportional to s given nu mbers

Pl' ""' PSI subject to over-riding minima rl, ... , rs and maxima bl, ... , bs. If the

portions could be non-integral, an easy calculation (form alized below) would determine

numbers, called the exact quotas, which would give the correct apportionment.

But the portions must be integers, and therefore suitable integers must be used

to approximate the exact quotas; we may think of an apportionment method as

an effective interpretation of the words "suitable" and 'to approximate".

This problem, which must be solved decennially to determine the number

of seats for each state in the U.S. House of Representatives, has an extensive

history; ref EQ M A provides a fascinating introductory survey. We shall therefore

use terminology appropriate to that specific application, and call the given numbers

PI'., P the populations of the respective states 1, 2, ... , s.
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1.2 The Work of Balinski and Young

In refs [N M CA] and [Q MA], Balinski and Young showed that a new apportionment

method, the Quota Method, satisfied three axioms intended to sum marize the

essential desiderata. The first axiom - "m onotonicity" -- excludes the Alabam a

paradox (see 1.5 below). The second axiom - "the quota condition" - limits the

discrepancy between the exact quota and any acceptable apportionment. Their

third axiom -- "consistency" - excludes capricious or discriminatory methods.

Balinski and Young then proved that the Quota method is the unique method to

satisfy all three axioms.

U3 Notation and Definitions

Bold-face letters denote s-tuples of real numbers indexed by i, where i

is restricted to be one of the integers 1, 2, ... , s, and all su m m ations are over
i. An apportionment problem is aset fp, , h) as above, with bi ri' bi' and h

integral, Pi> 0, O ri 1 bi, and 2 ri = h*, h h* Z bi. A problem-

set (p,•br) is the set of all apportionment problems which share the given values

Sof a• and b. An apportionment for the problem (,_ h) is an s-tuplea=

(a 1 ,..., as) of integers called portions, with ri t ai • bi for each i, and

-S'a 1 =h.

1-2
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An apportionment solution is a functionf, which to any such problem assigns

an apportionment a = f (p, rb_, h). Note that the "pure" problem, without maxima

or minima, may be identified with the special caser= (0 , ... , 0) andb = ( h, h,

...,h). An apportionment method is a non-empty set of solutions. A method M

is called monotone if, for every problem and any fin M p, f(pr b, h)• f(p.

rb, h+1) unless h = h* so that the right side is undefined.

We define the exact quotas qi by

qi = max (ri, rmin (bi, A pi)), where 4 = A (h) is

chosen so that 7 qi h.

Since g (A) =Z max (ri, min (bi, A .pi)) is a continuous non-decreasing function

of A, with g(O) = h and g (A) = h* for A large enough, the qi defined above

are unique (even thoughA (h) may not be.) Lower quotas and upper quotas are

defined respectively by qiJ= L (the greatest integer not exceeding qi)

and ui = [ti" (the least integer not less than qi.) An apportionment method

is said to satisfy lower quota if always f( . b, h) ŽLe(p2, r ., h) ; to satisfy

upper quota if always f ( p, r _b, h) • u ( p, , b, h); and to satisfy quota if both

conditions hold. There is excellent justification, in the context of the manpower

allocation problem, for requiring that an apportionment method should always

satisfy quota; e.g., if the "fair share" of a UICis 3.89 men from a certain rating,
any method which failed to satisfy quota by allocating fewer than 3 or more than

4 men would surely be unacceptable.

Note that the quota condition defined by Balinski and Young in § MAN and

CN M C A] differs in several respects from the condition defined above: (i) their

0 formal treatment disregarded the possible importance of upper bounds b on the
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portions; (ii) they did not define an exact quota for the constrained problem--

i .e. ,the problem with lower bounds r on the portions; (iii) their definition of

upper and lower quotas for the constrained problem permitted a difference of

more than 1 between them (as shown by their example, Table 6, p. 718, of [Q M A].)

As pointed out in [Q M N 6U1 , the distinction actually causes a difference of one

seat in the apportionment for their hypothetical 1984B populations of the U.S.

1.4 Duality and the Quota Method

Once maxima as well as minima are considered in apportionment problems,

a duality can be defined in which: maxima correspond with minima; an upward

induction (using house sizes increasing from h, to h*) corresponds with a downward

induction; "greater than" corresponds with "less than"; and lower quota correspu.nds

with upper quota.

Under this duality, the Quota Method of Balinski and Young will correspond

with another algorithm, which I have called the Dual Quota (D Q) Methou, and

which will have exactly as much basis for acceptability as the Quota Method - -

which wi ll henceforth be called the Primal Quota (P Q) method. Similarly, from

the proof that the Primal Quota method is the unique method satisfying the three

axioms of Balinski and Young we can produce a proof that the Dual Quota method

is the unique method satisfying three equally-reasonable axioms - viz, monotonicity,

quota, and a "dual-consistency" condition which is dual to their "consistencyh

condition.oC))
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Examples have shown that Primal Quota and Dual Quota solutions will-Vs

often dfe;Appendix Mblow shows wyi sulkl o hmt ge.Frhr

more, we have devised algorithms which permit us to define a spectrum of methods,

*seach of which satisfies both quota and monotonicity, and each of which avoids

capricious or abritrary behavior by employing a divisor function (0,see section

K 1.6 below. Those other methods will be described in Appendix H t.

1.5 The Alabama Paradox

The importance of monotonicity can ye seen by considering the "Vinton"

or "Hamilton" method -- viz: "Give each state its lower quota, and give one more

seat to each of the h-,r La states with greatest remainders qi - L'i " The pure

problem with p~ = (1, 3, 3) makes q (3) = (3/7, 9/7, 9/7) and q (4) = (4/7, 12/7,

12/7) and thus produces the apportionments (1, 1, 1) when h =3, and (0, 2, 2) when

h = 4; the first state loses a seat when the house increases from 3 to 4. Much

* colcrful discussior. has made clear that the Congress finds this"Alabama Paradox"

(named in honor of its first victim) unacceptable, and consequently the Vinton

method, although frequently used between 1850 and 1910, is no longer seriously

proposed for the apportionment of Congress. Neither do we propose to use it

in our manpower allocations.

0
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1.6 Huntington's Work: Divisor Methods

Any monotone solution f may be characterized by identifying, for any pb

Sand b, the sequence in which the states successively gain seats as the house

increases from h, to h, + 1, ... , h*. The divisor methods comprise a family of

monotone methods, each of which is defined by a divisor function d (a); the state

which gains the (h + 1) 'th seat is one which achieves the minimum of d(ai)/pi,

where a = (a,, a2, ... , as) =f( p, , b, h)is the apportionment for a house of size

h. (Huntington considered the maximum of pi/d (ai); we have reformulated the

condition to avoid division by zero.)

A reasonable divisor function d must be a monotone-increasing function,

and must satisfy atd (a) t--a + 1 for all non-negative integral a. (See Theorem

3 of Appendix IIL)

Huntington's paper, ref. [AR C], describes five methods, corresponding

to these five divisor functions:

(i) d (a) = a, called by Huntington the method of Smallest Divisors (SD);

(ii) d (a) = a + 1, apparently first devised by Thomas Jefferson but

known as the method of d'Hondt, and called by Huntington the method

of Greatest Divisors (G D);

(iii) d (a) = a + ½,apparently due to Daniel Webster but often called

the method ot Major Fractions (MF);

(iv) d (a) = 2a (a+ 1)/(2a+1), called the method of the Harmonic

Mean (HM); and

(v) d (a) = a (a + 1), called by Huntington the method of Equal Proportions

C •(EP).
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Note that the first two represent the extreme possibilities, and the

last three are respectively the arithmetic, harmonic, and geometric

means between those extremes.

Although other functions, such as d (a) = 2a + 1 -/aa (a+ 1),

d (a) = 0.3a + 0.7 VA (a + 0.5), et al., could be used for the divisor

function d (a), only the above five methods seem to have been seriously

considered between the publication of Huntington's analysis [MTARJ

in 1921 and the appearance of [NMCA] in 1974. The latter paper'stated

r• that no Huntington method satisfies quota, a result which was apparently

not emphasized in the many congressional discussions between 1921 and

the passage in 1941 of P.L. 291, "An Act to Provide for Apportioning...

Congress ... by the equal proportions method".

In fact, GD is the only one of the above five methods -- and probably

the only divisor method -- which satisfies lower quota; and, dually,

SD is the only one of the five -- and probably the only divisor method

-- which satisfies upper quota. (See Theorem 2, ref. [QMAJ . The

proof, which was omitted, is straightforward -- even when upper and

lower bounds are included, and even when the above narrower definition

of "upper quota" is used.)
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1.7 C onsistency

We express in our notation some salient portions of the definition of "consistency"

from p. 4604 of ref. [N M C A].

r Foranysolution •we define the eligible set at h + 1 to be the set E (h + 1)

= Si I fi (h) • qi (h + 1)) of states which could receive the (h + 1) 'th seat

without violating upper quota; fi (h) is the previous portion of the i'th state.
[~

A monotone method M is called consistent if the choice of state to receive

the (h + 1) th seat is governed entirely by priority among the states eligible at

( h + 1), where relative priority between any two states is determined only by

their populations and (im mediately) previous portions. Without completing the

details, it is clear that this consistency condition explicity protects the solution

from violating upper quota, but not from violating lower quota; it is thus rather gI
natural that the Balinski-Young Quota method -- the only method consistent in

the above technical sense which is monotone and satisfies quota - is related to

G D, which intrinsically satisfies lower quota.

In fact, the (Primal) Quota method assigns the next - i.e., the (h + 1) th--

seatto a state which achieves the minimum of (a. +1)/pi, where the minimum

is taken over the set E (h + 1) of those states eligible to receive the (h + 1) th

seat without violating upper quota. Thus G D and Primal Quota place the states

in the same priority order, but G D does not impose the eligibility requirement.

1-8
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The proof that the P Q method satisfies upper quota is easy; it is only necessary

to observe that E (h 4, 1) can never be empty. Although it is "natural" that PQ

"inherits" from GO the property of satisfying lower quota, the proof, that PQ

actually does satisfy lower quota, is far from trivial.

1.8 The Dual Quota Method

The concepts of dual-eligibility and dual-consistent can be derived from

the above definitions; if we consider the sequence of states which lose seats as

the house decreases from h* - 1, ... , h*, we define the dual-eligible set at h as

the set E'(h) = (i ] f (h + 1) ) qi (h)) of states which could lose the (h + 1)'th
.9' seat without violating lower quota. We then define a solution f as dual-consistent

if the choice of losing state is governed by priority within the dual-eligible set,

where relative priority of two states is determined by their populations and previous '9,

(i.e., at the next-higher house-size) portions. It is natural that in this case an

analog of the method of Sm allest Divisors (which intrinsically satisfies upper quota)

has the desired properties. The modified proof mentioned above may be translated

mechanically into a proof of the following

Theorem: There exists a unique dual-consiste it house-monotone method satisfying

quota.

That method is called the Dual-Quota method (D Q), and is defined in section

11.3 of Appendix TI.
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APPENDIX II

DESCRIPTION OF QUOTA METHODS

IIfo The Classical Quota Methods

We give first the defining algorithms for the Balinski-Young Primal Quota

Method (introduced in G M C A3 , which exposed the possibility of a method being

both monotone and quota) and the Dual Quota Method. The former builds upward

from h,, and the latter builds downward from h.

11.2 The Primal Quota Method

The Primal-Quota (PQ) method is the set of all solutions 5 defined

as follows:

~~W (i) L9 ( _ r s_ h,) =ri for all i;

(ii) Given ai = Ji (p, rb,h)forsome h with ht h h*, define

E(h+l)asthenon-emptyset i ai Z_ qi (h+l)Jand

let k be some member of E (h + 1) such that (ak + 1)/Pk = min

/(ai + 1)/pi) where the minimum is taken over E (h+ 1); then

we set )Ok (prkb h+1) = ak +,i (p,,h+l) =rabfor

all i A k.
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Various solutions of the P Q method result, according to how k is selected in

the case of a tie for the minimum.

11.3 The Dual-Quota Method

The Dual-Quota method (DQ) is the set of all solutions t4"defined as follows:

(i) i , = bi for all i;

(ii) Given ai /'Pi (.p' , b, h), we define the set E '(h-i) =

i I ai> qi (h-1,)• let k be a state in E '(h-i) such that
(ak -a1)/Pk max h ai - 1)/pi• ,where the maximum is over

ak - '/Pk mah-)=a i
E'(h-1); then we set /4k( prb, rk i (a p, _, h-i)

- ai for i A k.

Various solutions of the D Q method result, depending on how k is selected when

two or more states tie for the maximum.

Note that, in the DQ algorithm, we are deciding whether the ith state

shall retain its ai seats, or only ai -1; thus, evaluating the divisor-function at the

smaller of the two portions being considered, we get d(ai-1) = ai-l. In the PQ

algorithm, while deciding whether or not to add another seat to the a, which it

had previously, we were also evaluating the divisor-function at the smaller of

the two portions being considered, obtaining d(ai) = ai + 1.



II.4 Direct Quota Methods

The Primal Quota method, by its definition of the eligible set E (h+1), explicitly

prevents any solution _"Ofrom violating upper quota. It is stated without proof

in [N M C Aj and [Q M A] that G D satisfies lower quota; the proof is not difficult.

One may say that any solution )0 of P Q . atisfies lower quota "because of" the

similarity between PQ and G D; in any case, CQ M A] proves that PQ does satisfy

quota. (That proof is far from trivial; our inclusion of upper limits, and the slight

change in our definition of lower quota, requires some added complication but

no essential change in the proof.)

Similarly, the Dual Quota definition explicitly precludes any solution__ of

DQ from violating lower quota, and (perhaps "because of" the similarity between

D Q and SD) such a f/cannot violate upper quota either.

Let us now generalize the definition of 11.2. The direct ascending quota

method with divisor d is the set of solutionsfY defined recursively as follows:

(i) ) 10 i(p,_,h*) = ri

(ii) Given ai = ýoi (p, ., b h)forh h Zh*, define the set S (h+l)

of supere-igible states at h+1 to be the set of states which could

receive the (h+l) 'th seat without violating quota, and let k be

a state in S(h+l) such that d (ak)/Pk min d (ai )/pi , where the
k)P

minimum is taken over S (h+1). Then define )Ok (R b, h+r ) =

ak +1r b, h+) = a, for i f k. If at any stage the set

S (h+l) is empty, we say that the direct ascending quota (d.a.q) method

fails for that divisor-function d and that problem ( b. h).
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It is clear that the d.a.q. method with divisor-function d(a) = a + 1

is simply the PQ method, and we know that S (h+1) is never empty in

that case. Unfortunately, we have acquired empirical evidence supporting

the

Conjecture: Every d.a.q. method, except the PQ method, fails for some

problem.

Discussion: We can show that, for any divisor of the form d(a) = a+ c

with 0 6 c 4 1, there is a problem which results in an empty S (h + 1)

at some stage; it sufficies to take the pure problem with two components

of p having the values x, and 2.x components having the values 1,

where x is an integer exceeding (1 - c)-1 + 2. The only standard

f methods which do not have divisor-functions of the form a+c are HM

and EP, and both their divisor-functions succumb to the same examples

with c = 1/2. There remains the possibility that some baroque divisor-

function, such as those mentioned at the end of section 11.6 above,

might happen to allow a d.a.q. method.

One can define the dual concept of a direct descending quota (d.d.q.)

method with divisor d; the only caveat is that we must use d (ai -1),

as mentioned in section 11.3 above. We note that the d.d.q. method

with divisor-function d(a) = a is simply the DQ method, for which the

analogous set S'(h-1) is never empty. Dual to the previous conjecture

is theK

"Conjecture: Every d.d.q. method, except DQ, falls for some problem.
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It is clear that the d.a.q. method with divisor-function d(a) = a + 1 is

simply the PQ method, and we know that S (h+1) is never empty in that case.

Unfortunately, we have acquired empirical evidence supporting the

Conjecture: Every d.a.q. method, except the PQ method, fails for some problem.

Discussion: We can show that, for any divisor of the form d(a) = a + c with j
0O'-0' c Z1, there is a problem which results in an empty S (h + 1) at some stage;

it sufficies t9 take the pure problem with two components of p having the values

x, and 2.x components having the values 1, where x is an integer exceeding

(1 - c- 1 + 2. The only standard methods which do not have divisor-functions

succumb to the same examples with c = 1/2. There remains the possibility that

some baroque divisor-function, such as those mentioned at the end of section

HI.6 above, might happen to allow a d.a.q. method.

One can define the dual concept of a direct descending quota (d.d.q.) method

with divisor d; the only caveat is that we must use d (ai -1), as mentioned in section

11.3 above. We note that the d.d.q. method with divisor--function d(a) = a is simply

the DQ method, for which the analogous set S'(h-1) is never empty. Dual to the

previous conjecture is the

Conjecture: Every d.d.q. method, except Dq, fails for some problem.
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In short, if we attempt to generalize the notion of consistency (in the sense

of refs UN M C A] and 5 M A]), and to define a direct quota method to be either

a d.a.q. or a d.d.q. method, we do not find any new apportionment methods which

satisfy quota and are monotone.

-I.5 Other Quota Methods

If, in spite of the sombre conjectures of the preceding section, we attempt

Sto define an ascending quota method for some divisor function d other than d(a) = a+1,

we find, for many problems, that a sequence of non-empty supereligible sets S(h,+l),

S(h+2), ... , S(h*), is generated, so that a system atic monotone solution is generated

which satisfies quota while showing great similarity to one of the Huntingtonmethods.

In order to have a method which is always applicable we must allow for the eventuality

that the set S(h+l) is empty. When such an eventuality arises, the previous apportionment

cannot be extended to an apportionment of the next-higher house without violating

monotonicity, and therefore must be excluded from the solution which is being

generated by the algorithm; in other words, we must simply back-track, choose

the next-best in place of the minimum previously chosen, and attempt to proceed.

("Next-best" means by "best" the extremum being sought- minimum of d(ai)/Pi

for the ascending methods.)
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Since there do exist solutions of the type we seek - monotone methods

which satisfy queta - it is clear that we must eventually find one. Even very

simple examples show that, in general, different divisors will result in different

methods; Appendix IMI explains some of those differences. Although we have as

yet few theorems limiting the amount of "backtracking" which might be needed,

in practice there is rarely any backtracking at all. In any case, the solutions found

in this way are neither arbitrary nor capricious, and clearly deserve to be called

systematic, even though they do nct satisfy the Balinski-Young definition of "con-

sistency".

This discussion was intended to motivate an algorithm which we shall proceed

to define, after some further preliminary definitions.

A ny monotone apportion ment solution f, applied to the proble m-set ( p,

r, b) -- by which we mean the set of problems (b r, b, h) as h ranges from

h,,• ri to h* =.bi -- determines a sequence, to be called the gaining-state
index-sequence GSIS (f, p,, _), which is a sequence of length h*-h, whose j'th

term indicates the state which gains a seat when the house increases from
h,+j-1 to h,+j. Sincef( ph,)=rand f(!,•b,h*) = b, we see that

GSIS f p, r must contain exactly bi-ri occurrences of the index i.

Not only does such an f determine a GSIS, but it is clear that we can specify

any monotone apportionment function f entirely by giving the mapping from the

)set PS of all problem-sets to the set of positive finite-dimensional integral vectors.

C'
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That mapping may be arbitrary, provided it assigns to any (p, rb_) a G SIS which

includes exactly bi-ri instances of the index i. Thus the problem of defining an

apportionment function may be aided by defining a GSIS for each problem-set

in some reasonable way. Furthermore, whether or not f satisfies quota when applied

to a particular problem-set (p•• b) can be determined from the properties of

the G SIS (, p, r, b); it is merely necessary to check the number of occurrences

of the index i in the first j terms of the GSIS, for each i and j, against the

exact quota at house size h.+j for the ith state. We thus define, for each problem-

set (p,, •b), the set QIS (p,.•, _) of quota index-sequences for ( , , p, which

includes exactly those GSIS which define apportionment functions satisfying quota.

low we define a relation called d-precedence (which depends on the divisor

function d) between elements d - of QIS de pe as follows:

c• d-precedes ' "if

(i) d 4 =d for all j=1, 2. .,+ +1

(iii) d(ak)/Pk . d(ak,)/pkl, where k = ( ,+1 k' =0+1

and a is the apportion m ent of (p, r b, h.+) induced by the initial

sequence com mon to dand d'.

(The relation is clearly transitive, irreflexive, and therefore acyclic.)

11-8
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Now we define an ascending quota solution (a.q.s.) with divisor d as a

function f which assigns to every problem (p, rj b, h) an apportionment determined

by applying to the problem -set (p, r. ,) some quota index-sequence er of Q IS

(p r,.b which is not d-preceded by any othera-' of QIS (p, r We define an

ascending quota method with divisor d as a non-empty set of a.q.s with the same

divisor, and denote such a method by AQ M(d). Such methods must exist for any

divisor-function d, since no QIS is empty and d-precedence is acyclic. In particular,

if d is defined by d(a) = a +1, the AQ M(d) is PQ.

Given any problem (p, r b, h) and any divisor-function d, an apportion m ent

f(p, r, b, h) belonging to some solution f in A Q M (d) may be computed by this

Ascending Quota Algorithm:

(i) Initially define ctf-to be an empty sequence, its length 'to be 0,

the house-size h' to be h,, and the current apportionment

f f(p, rb,h') tobe f(p,r, bh*) = r.

S(ii) Defining a = f_(, h'), compute the exact quotas q ( p,b_,b,

h'+l) and find the supereligible sct S(h'+1) of states which could

receive the (h'+l) 'th seat without violating quota. Define Seq (h'+l)

to be the sequence of indices of S(h'l~), arranged in non-decreasing

order of d(ai)/pi; Seq (h'+1) will be empty if S(h'+1) is empty. Set

0 n(h'+l) = 1.
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(iii) If Seq (h'+l) has fewer than n(h'+1) terms, proceed to (vi);

otherwise, let k denote the n(h'+l) 'th term.

(iv) Augment the sequence 0' with the index•Ao, increase

by 1, increase h'by 1, and define fk p, r. b, h')

ak+l, fi( , b, h') = ai for i ' k.

(v) If h' . h*, go to step (ii); if h' = h*, go to step

(vii).

(vi) Since it is impossible to extend the current sequence or while

remaining within QIS ( •, r, b), we must delete the last

index of ', decrease its length e by 1, decrease h'

by 1, and then increase n(h'+l) by 1 before returning to

step (iii).

(vii) The desired apportionment is then found by employing the

first h-h, terms of a' to define f ( ., r, b, h).

11.6 Comments on the Ascending Quota Methods

A dual concept -- the Descending Quota Methods -- may be defined by

an analogous algorithm, which begins with house size h* and works downward,

withdrawing a seat from the supereligible state which maximizes the criterion

d(ai-1)/pi, backtracking as necessary when an empty supereligible set is reached,

and finally ending with house size h,. If the selected state is always appended
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to the beginning of the state index-sequence, we will terminate, for each problem-

set ( p,• b_), with a sequence belonging to QIS ( p, b) -- in fact, with a sequence

which satisfies an extremum condition dual to the condition used above to define

an ascending quota solution and an Ascending Quota Method. The DQ M always

attempt to maximize the criterion d/p for the rightmost state-index of the QIS

set, while the AQ M attempt to minimize the same criterion for the leftmost state-

indexes of the same set. Because the total number of appearances of each index

in any QIS is fixed, these criteria are not in direct conflict; but empirical evidence

strongly suggests that we do not need to choose between the methods AQ M(d)

and D Q M(d), because they seem to be identical. That conjecture has so far been

proven only for some special cases -- e.g., for problems with three states

and one of the five divisor-functions described by Huntington., and for d(a) = a+ 1/2.

Having found one apportionment in AQ M(d), we can proceed to find all

others by reconsidering all cases in which a tie occurred for the choice of gaining* I

state; if there were no such ties, the apportionment is unique.

In the legislative apportionment problem, exact ties are so unlikely that

they are merely nuisances in the mathematical theory; but in the manpower allocation

problem, ties are of crucial importance.

In either problem, the incidence of ties may be greatly reduced by redefining

the relation of d-precedence so that, among states with equal ratios d/p ,the

state with larger population should gain the seat first (or, lose it last).

II-11!
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Numerical calculations should be arranged so that exact integers are employed

in lieu of approximate ratios -- this is again of greater importance in the manpower

allocation problem, where exact ties are more likely.

In the unlikely event that an attractive Huntington method is found which

is not a divisor method, appropriate modifications could be made in the above

definitions.

Although the co r putation of an A Q M (d) solution is effective, it is long

and seems very inefficient if h* is much greater than h. Some conjectures and

theorems are provided in Appendix MI, which promise to reduce the labor of computing

these new Quota solutions.

- Since the computational methods provided do all make explicit use of the

upper bounds b on the portions of the several states, it is not self-evident that

the introduction of those upper bounds (for a problem which did not naturally

have upper bounds) will have no influence on the answer. The Constitutional upper

limit on the size of a state's delegation ("..shall not exceed one for every thirty

thousand [of population]") does provide such a natural upper limit in case of

the apportionment of the U.S. House of Representatives, and Appendix III settles

a corresponding question for manpower allocations, but the situation will remain

slightly incomplete until conjectures of Appendix III are proven.

Thus, corresponding to each of Huntington's "workable methods", and to

any other divisor function, we have defined a similar method which satisfies quota

and is monotone. (In fact, if the AQ M(d) and DQ M(d) are found to be not always

identical, there will sometimes be two analogs for each Huntington method!)
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AppendixmII will discuss the advantages and disadvantages of each of those, inI

the context of the legislative arid the manpower applications.

1
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APPENDIX III

THEOREMS ON APPORTIONMENT

III.1 General

In this appendix, we provide some definitions, conjectures, and

f •theorems. We define the linear divisor functions and the linear divisor

methods, which seem to have more tractable properties than other Huntington

methods. We show that our Primal Puota method (which differs from the

9• Quota method of Balinski and Young only in having an altered definition

of "quota" and including upper bounds on the portions) satisfies their

axioms, and give a detailed proof that the new Dual Quota methcd (see

11.3 above and Mayberry [6].) satisfies the duals of those axioms.
t

We show that, under certain circumstances (which we hope to widen

by more general theorems), the upper bounds b and lower bounds r will

have no effect on an apportionment. We show that linear divisor methods

are periodic in the Douse size h, that the only important non-linear methods

(HM and EP) are ultimately periodic, and that the Quota analogs of all

those methods (defined in section 11.7 above) share the same periodicity

properties. We show that those same methods will give rise to "ties" at

predictable stages within those periods.

Finally, we offer the opinion that the manpower allocation process

should use the MFQ method (a Quota method related to the method of Major

Fractions), and that the appointment of Congress should either use MFQ

or the Quota analog EPQ of the presently-approved EP method.
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We have two definitions for the quota analog of each divisor method;

only in the self-dual case of MFQ can we prove that they are equivalent.

However, even if examples can be constructed for which the two definitions

lead to different results, there is ample empirical evidence for the con-

tention that they are usually the same; and both methods will satisfy

quota, avoid the Alabama paradox, and closely resemble the corresponding

Huntington method.

We have conjectures about the similarity of the new quota methods to

Z the previously-known Huntington methods in cases where the results of the

latter satisfy quota, but few proofs; we also remark that the computations

require unusual attention to detail because of the algorithms' susceptibility

I tto round-off error and because of the tediously recursive form of the basic

definitions. (The magnitude of the computational task is not a significant

factor in selecting an algorithm for the apportionment of Congress, butStT will be extremely important when a Quota method is selected to allocate)I
manpower in the U.S. Navy.)
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111.2 Restrictions on Divisor Functions

A divisor method of apportionment according to Huntington is a

monotone method, defined with the aid of a divisor function d, where the

state which gains the (h+1)'th seat is the state achieving the maximum

of pi/d(ai); here a denotes the apportionment at house size h. Recalling

that the purpose of the divisor function is to facilitate making the

portions nearly proportional to the respective populations, it is cer-

tainly natural to require that, as the house size increases without limit,

the ratio a1 /a 2 of the portions of two specified states shall tend to the

ratio P1/P2 of their populations. This implies that the ratio d(a)/a

should tend to a non-zero limit as a---t-.

Since multiplying the divisor-function by a constant does not

change the resulting apportionments, we may, without loss of generality,

assume that d(a)/a---+l as a---oo; this is equivalent to assuming that

d(a) = a + c(a), where c(a)/a-40 as a--->-.

Now let us also insist that a divisor-function d shall not preclude

the attainment of exact proportionality, whenever the house size and pop-

ulations permit it. More formally, we define a divisor-function d to be

acceptable if, given integers x and y with x/y = P1/P2, state 2 will

never receive its (y+l)'th seat until state 1 has received its x'th

seat. This imposes constraints on d, which does not seem to have been

mentioned by Huntington in [4] and [5] nor by Balinski and Young in

CKaJ, viz:

0
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Theorem 1: The divisor function d is acceptable if both

Mi) 0:c(a)•l for all a, and

(ii) if there is an al with c(al) =0, then there is no a2 with

c(a2) = 1.

Proof: (Note that Huntington's use of the terms "greatest divisors" and

"smallest divisors" suggests that he may have been aware of these con-

ditions, although the author considers it more likely that those names

refer only to the fact that, in considering an increase of a portion

from a to a+l, the divisor to represent "current portion" could reason-

ably be taken as either a, or a+l, or some compromise between them.)

Suppose that, for some integer y>O, we have c(y)-O. (Note that

d(a) must surely beŽO, so c(O)0O.) Then choose p2 = y, and define

t = d(y)/y. Since t--l, and d(a)/a-al as a-*--, we see d(a)/(a+l)--l,

and we can find z large enough that d(z)/(z+l)>t. Now, choosing

P1 = x = z+l, we find of course that x/y = p1/P 2 ; but d(y)/p =

t-4d(x-l)/x = d(x-l)/pl, so that state 2 would indeed obtain its (y+l)'th

seat before state 1 obtained its x'th, and d is not acceptable. A

similar argument excludes c(a)> 1.

The other half of the theorem is shown by noting that x/y = 1l/P2

and atd(a):-a+1 imply d(y)/p ay/p = x/P ld(x-1)/Pl, where the first
2 2 11

inequality is strict unless d(y) = y, and the last is strict unless

d(x-l) = x-1 + 1; thus, such a function d is acceptable. This completes

the proof.
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Corollary 1: Any acceptable divisor function d is a strictly monotone

increasing function of the non-negative integer a. (It is therefore

superfluous to explicitly require monotonicity in d.)

Corollary 2: All linear divisor methods with 0zc:-1, and all five of

the methods studied by Huntington (see Section 1.6 above) are acceptable.

.9 1.,
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111.3 Linear Divisor Functions

We say d is a linear divisor function if d(a) = a + c where c is

a constant and O-c:l. A divisor method based on a linear divisor

function will be called a linear divisor method, and ident;fied as LDM(c)

since the value of the constant c specifies the method comipletely.

Theorem 2: No linear divisor method, except GD, which is LDM(1), satisfies

lower quota.

Proof: We construct a counter-example for LDM(c) with 0= c 4 . Since

(x-2+c)/x-+1 as x-*", we can choose an integer x with (x-2+c)/x .c. Then

we define the pure problem with x+1 states, ( Cx, 1, 1, ... , 1), and

h = 2x-2. Since d(O)/P 2 = c4(x-2+c)/x, which in turn = d(x-2)/p 1 ,

LDM(c) produces the apportionment (x-2, 1, 1, ... , 1), which vlolat.s

lower quota since ql = x-1.

Theorem 2': No linear divisor method, except SD, which is LCM(O), sat-

isfies upper quota.

Proof: (This is of course immediate by duality from the preceding, but

we provide brief details.)

Given LDM(c) with 0'c•I, take x.N(1+c)/C, p as above, and h = 2.

Then ql = 1, but state 2 gets the second seat and a2 =2, violating

upper quota.
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Exact Quota HM and EP
State Population at h = 23 Apportionments

for h = 23

1 62 15.500 17

2 5 1.250 1

3 5 1.250 1

4 5 1.250 1

5 5 1.250 1

6 5 1.250 1

7 5 1.250 1

Total 92 23.000 23

Table 111.1

Example Showing That Both HM and EP

Can Violate Upper Quota (See Theorem 3)

0
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Theorem 3: Both HM and EP violate both upper and lower quota.

Proof: Fable III.1 and the first column of Table 111.2 show the necessary

counter-examples.

Theorem 4: SD satisfies upper quota, and GD satisfies lower quota.

Proof: (Note that this theorem extends, to problems involving upper bounds

as well as lower, an unproven part of Theorem 1 of [NMCA] and Theorem 2

of [QMA].)

Formally, SD is the set of solutions . defined by

(i) ,('i(h*) = ri for i = 1,...s;

(ii) Recursively for h' = ,*+1, h*+2,...,h, setting

a = t(:i'-1), we find k such that ak/Pk = minU ai/pi

where the set U = I ai4 bi ,and we set

Y'k(h') = ak + 1, (h') = ai for i ý k,

If ever such a Y fails to satisfy upper quota, let h' be the

first (i.e., lowest) such house size in the problem (p, r, b, h). If

the (h)th seat was assigned to state k, then every state i # k satisfies

upper quota at h' because it did so at h-1.

We seeE ai = h' - 1<y, q(h'), so that for some state m,

am.Zq(h'); m is in U because qm(h')Zýbm. Also, qmlh'l>amrm

shows that qm(h') = mln(bm, pm'.A (h')). Thus, amqm(h')_!pm.A(h').
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Then, by the choice of k, ak/Pk1am/pm-4A(h'), and ak4,A(h').pk,

which is in turn A qk(h') unless qk(h') = bk, and k is in U so ak./bk.

In any case, ak4qk(h') so that NPk(h') = ak+1 qk(h')+l, showing that

does satisfy lower quota at h' and completing the proof.

(The second part of the theorem is dual to the above, and can be

shown by a mechanical translation of each step; one must of course begin

with the downward-recursive definition of GD.)

1~1.
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III.4 Primal Quota and Dual Quota Methods

We have repeatedly described the alterations made in the original

(Primal) Quota method of Balinski and Young as "minor." In this section,

we give that assertion a definite meaning by showing that both the Primal

and Dual Quota methods, as we define them, do satisfy the axioms Intro-

duced in [l] (or rather, in the case of the consistency axiom and the

Dual Quota method, the dual axiom). Because the two proofs are dual to

each other, it would be wasteful to prove both; and we prefer to prove

the above assertion in some detail for the dual quota method, since it

differs more from the proof of [2]. In spite of the distinctions, the

proof given below follows the essence of the proofs of Theorems 3 and 4 of

Theorem 5: The Dual Quota method DG is monotone, satisfies quota, and

is dual-consistent.

Proof: (Refer to the definition of DG in 11.3 above.)

By the construction, it Is obvious that DQ is monotone (since the f
algorithm withdraws one seat from some state for each decrease of the

house size), and dual consistent (since the selection of losing state,

within the dual-eligible set E', depends on a criterion -- the maximiza-

tion of (ai-1)/p 1 -- governed entirely by populations and previous

portions).

C-)
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It is also obvious that any solution Y-in DQ satisfies lower quota,

since Yd(h*) = b - R(h*), and it is only the dual eligible states -- viz,

those whose portions could be decreased without violating lower quota

-- from which the algorithm may withdraw a seat. E'(h-1) is surely non-

empty; sincez ai = h and Zqt(h-l) = h-i, there must be some state t

with at >qi(h-1). (Note this argument is simpler than that of Theorem 4

of [2] -- we have thrown some of the effort back into the definition of

"exact quota.")

Thus we need "only" show that satisfies upper quota. Suppose the

contrary; let h.4 h* be the first (i.e., greatest) house size at which

(p, r, b., h) fails to satisfy upper quota, and let j be a state with

rý4j(hol>)uj(ho). Since j satisfied upper quota at ho+1, j is not

the state which lost the (ho+l)'th seat; and, since /7j(hO) t-4j(h*) bj,

we have qj(ho)!uj(ho)J- bj.

Now define the set M of states under-represented at ho;

M = fm [/m(ho)Zqm(ho)). Obviously j is not in M; but M cannot be

eupty since/' (ho) : =2qi (ho) and fi (ho0) - qj (ho).

Since_/'satlsfies lower quota, for each m it, M we have

(.mlho) =>.m(ho)4 qm(ho), and the non-integral qm(o) must equal

Pm., 4oho) Every state of M has surely lost at least one seat at

some house size h in the range ho0 h Nh*. Denote by t the last

state of M to lose a seat for any house size in that range, and by

ht the house size after that loss.

I,

III-il



If ht were = ho, and t had lost the (ho+l)'th seat, then

I'(ho) =/"tho+l) -1--qt(ho) because t is in M, while

4j(ho+l)-1 =fi(ho)-lqj(ho) by definition of J. Thus

(f•(ho+l)-l)/qt (ho)0  1 / (rjlho+l)-l)/qj(ho), so that

(tt(ho+1)-1)/(Pt.1(ho))1 (Ylj(ho+l)-l)/qj(hO) • (,Y'j(ho+1)-1 )/(pj. A (ho)),

since t is in M and qj(ho) 0 bj. But j was surely dual-eligible

at ho; thus t was not selected to lose the (ho+l)'th seat, and ht # ho.

Now define K as the set of states to lose a seat at house sizes

h in the range ht'>h-ho; formally K =(k 1k(ho)'itk'(ht)). K is not

empty, but (by definition of t) KAM is empty.

In four steps, we Ahall show that

(Xýk(ht+1)-1)/Pk > (>"t(ht+l)-l)/pt for every k in K:

First, t is not in K, sok(ht+l)-I = (ht)-l, which in turn

isŽYk(ho) by definition of K, which again is!qk(ho), since k is not in

¶ M. Thus, (U k(ht+l)-I )/Pk ! qk (ho)/Pk"

Second, qk(h0)- X~(ho)z/-(htVbk soqh)=Second, ~ ~ O qkh) kh) kh) k, so qk(ho)=

max(rk, pk.A/(ho))Apk. /4(ho), and qk(ho)/Pk Ž! (h0 ).

Third, since t is in M, ,Y't(ho)Zqt(ho) =pt.*"(ho), so that

0(ho) )> (hol/pt.

Fourth, since t is not in K,/t(ho) = ,ý'(ht), which (by definition

of t) is equal to / ht+1--1.
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Assembling the results of those four steps, we see that

(0'k(ht+1)--1)/Pk >(t(ht+l)-1)/pt, so that any state k in the

dual-eligible set E'(ht) would have precluded t from attaining the

maximum at house size ht. But t did attain that maximum, and lost

the (ht+1)'th seat, hence KAE'(ht) must be empty, and
) •>k (ht) = • (ht+l):--qk (ht)"

Finally, we deduce a contradiction from:

)ht - ho = K(/k(ht) -Y(ho) by definition of K;

Z Kfk (ho0 ) K qk (h0) since KAM is empty;

ZKfk (ht)tý2K qk (ht) from preceding paragragh;

EL qi (ho)4ZL qi (ht), where L is the set of states not

in K, because t is not in K and qt(ho) = Pt'I(ho)zqt(ht).

Assembling those inequalities we obtain:

ht -h =h K(,k(ht) - 'k(ho))

•I K( qk(ht) - qk(ho))

S(qii(ht) - qt(ho))

= ~ht - h

a contradiction which shown that DQ satisfies upper quota and completes

the proof.

Theorem 6: The Primal Quota method is the unique monotone and consistent

method which satisfied quota.
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Proof: This theorem rests entirely on the similar theorem of [2].

The only differences between our Primal Quota method and the

Quota method of Balinski and Young, are (i) we have permitted a more

general problem, which includes upper bounds on the portions, and

(ii) we have used a slightly different -- and more restrictive --

definition of quota. Since ref. [2] has proved uniqueness for their

definition, it follows that no method other than our Primal Quota can

have the three desired properties for our problem.

4
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111.5 Influence of the Upper Bounds and Lower Bounds

In this section, we collect such theorems as we have which concern

the importance of the upper bounds and the lower bounds of the apportion-

ments which result. Where we have not a theorem, we present a counter-

example; where we have neither, we present a conjecture. The hope is,

that results of this class can free us from the necessity to compute

step-by-step solutions for an entire problem-set (as specified in some,

of the algorithms of Sections 11.5 and 11.6).

Theorem 7: Changing the upper bounds for a problem will not change the

Primal Quota apportionment unless it changes the exact quotas.

Proof: Formally, the hypothesis states that q(p, r, b, h) = q(p, r, b', h),

and the conclusion is that there exists a Primal Quota solution r such that

^ p, r, b, h) = a, where a = /'(p, r, b, h) is a Primal Quota apportion-

ment for the first problem.

(Note that this theorem does not allow variation of the lower bounds

__r.)

It is easy to see that the same value ofA(h) may be used to compute

the two exact-quota vectors, and thus that any upper bounds, which are

constraining for either problem at house size h, must be equal. Then

for smaller house sizes h', it is true a fortiori that any constraining
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upper bounds are equal, so the exact-quota vectors are equal at h' also.

Reference to the definition of the Primal Quota algorithm (Section 11.2)

* shows that the resulting appointment depends only on the sequence of

exact quotas and constraining upper bounds, proving the theorem.

Dual to the above is Theorem 7': Changing the lower bounds for

the problem will not change the Dual Quota apportionment unless it

changes the exact quotas.

Notation: The divisor method with divisor-function d will be denoted

by M(d).

Definitions: For any problem (p, r, b, h), any divisor-function d, any

state i, and any numbero( satisfying ri • 1 (• bi, we call ,( a potential

i-seat, and define the d-criterion for such a potential i-seat to be the

quantity d(o(- 1 )/p i .

Theorem 8: Suppose )Ois a solution belonging to a divisor method M(d),

and we are given two problems, (p, r, b, h) and (p, r', b', h), with

the apportionmentY(p r, b, h) = a. If the two problems are so related

that we have, for each i, either ri_•r'iai or r'i 4 rilaj, and also,

for each i, either ai b'iŽbi or ai>>bi>b'i, then there is a solution

belonging to M(d) with i'(p, r', b', h) = a.

I Proof: M(d) solves the first problem by first assigning ri seats to

each state I, and then selecting, from the total h* - h* potential

0
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seats, the h - h. whose d-criterion values are smallest; at-ri
potential i-seats are thus selected. If ri*r'_ ai, then r'i-ri of

the potential i-seats selected fcr the first problem are assigned without

competition when the second is solved; if r'i4ri4ai, then ri - r'i

more potential i-seats must compete when the second problem is solved,

but the monotonicity of d shows that they would be selected in any

case before the (ai)th potential i-seat, which was actually selected.

Similar arguments for the upper bounds complete the proof.

I

z
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.Il.6 Periodicity of Apportionment Solutions

When these apportionment methods are applied to such problems as man-

power allocation, the possibility arises that the number to be apportioned

-- the "house size" -- might exceed, perhaps by a substantial factor, the

sum of the nurbers -- the "populations" -- on which the proportionality

is based. Such a circumstance, in the legislative-apportionment or pro-

portional-representation problems, would imply that the number of seats in

the legislature exceeded the total electorate, and so has been inevitably

disregarded hKretofore.

Under the circumstances when the house size greatly exceeds the sum

of the populations, we find that most methods which have ever been proposed

are either periodic, or ultimately become periodic. (It is even true of

the Hamilton method.)

Theorem 9: If P denotes the sum•Pi, and P denotes an s-vector all

of whose components are equal to P, then ( P, 0, P. P) = p if > is a

solution belonging to any divisor method, any quota method, or the Hamilton

method.

Proof: (Recall that the definition of "(apportionment) problem" required

that the Pi be positive integers.)

Because the exact quotas are just the populations, a method which

satisfies quota must produce the integral apportionment p.

111-18
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Because exact proportionality is possible for this problem, any

acceptable divisor method will achieve it. (See Section 111.2 above.)

Because aq(P) - p, h -0i - 0, and the Hamilton method is trivial

for this problem.

Theorem 10: Linear divisor methods, when applied to a sequence of pure

problems with house size increasing without limit, produce a sequence of

Sgainirg states which is periodic with period P =2Pi"

Proof: By the preceding theorem, state i must get Pi of the first

P seats, for each i. Then the choice of gaining seat at house size

P+1 will be governed by the criteria d(pi)/pi, for i = 1, 2, ... , s.

But the linear 'divisor methods have divisors such that d(a) = a+c, so

that d(pi)/pi = (pi+c)/pi = I + d(O)/pi; thus the order-relations for

the criteria at h = P+1 are identical with those at h = 1. If ties

are broken for h between P and 2P-1 as they were for h between

0 and P-i, we find that each criterion at house size P+h is greater

by 1 than the corresponding criterion at house size h, and the periodicity

is established.

Theorem 11: All the quota methods of Appeneix II which depend on a linear

divisor-function are periodic in h with period P, when applied to a

sequence of pure problems with common population-vector p.

Proof: Examination of the algorithms in Sections 11.2, 11.3, 11.5, and

11.6 shows that the selection of gaining or losing state is always based
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SD SDQ=DQ
House HM HMQ MF MFQ GD GDQ=PQ Hamflton
Size EP EPQ

0 0000 0000 0000 0000
1 1000 0001 0001 0001
2 (1100) 1001 0011 0011 0011
3 (1110) 1011 0012 3012 0012
4 (1111) 1012 0022 0022 0022
5 1112 1022 0023 0023 0023
6 (1122) 1023 1023 (0024) 0033 1023
7 1123 1123 0034 1123
8 (1133) 1124 (1133) 1124 (0035) 1034 1034
9 1134 1134 0045 1035 1134

10 1135 1135 (1046) 1045 1135
11 1145 1145 1046 1145
12 1146 1146 1146 1146
13 1156 1156 1156 1156
14 1157 1157 1157 1157

Table III. 2

The Apportionments Generated by

Eleven Distinct Methods:

SD (Smallest Divisors) and its Quota Analog SDQ ( Dual Quota)
HM (Harmonic Mean) and its Quota Analog HMQ
EP (Equal Proportions) and its Quota Analog EPQ
MF (Major Fraction) and its Quota Analog MFQ
GD (Greatest Divisors) and its Quota Analog GDQ (= Primal Quota)
Hamilton (= Vinton Method of 1850)

(All these methods applied to the Pure Problems with
p = (1, 1, 5, 7) and OS h !14.)

Notes: (i) All ties were resolved by giving the seat to the
"first among equals";

(ii) Apportionments in parentheses violate quota;
(iii) Alabama Paradox exhibited at h = 8.
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on the exact quotas, and the criteria d(a)/p. When the house size increases

by P, each exact quota increases by pi and each previous portion increases

by pi, and each criterion d(a)/p increases by 1; thus, the eligible sets are

identical, and the state to be selected within the eligible set is identical;

an empty eligible set (causing a backtrack) will also be repeated at

intervals of P in the house size.

For the Dual Quota and other descending quota methods, the allocations

must begin with some multiple of P seats; then the same sequence of losing

seats will be found within each consecutive block of P seats. The

sequence does not depend on what multiple of P is used as the initial

house size; Theorem 9 shows that the initial allocation for a house of

size n.P is simply n.p.

Theorem 12: When applied to a sequence of pure problems with common population

p and increasing house sizes, the method EP, HM, EPQ, and HMQ ultimately

attain one of the same periods as the methods MF, MF, MFQ, and MFQ, respec-

tively.

Proof: Define f(a) to be the difference a + 1/2 -v/a(a+l) between the

divisor a + 1/2 used in MF and the divisor v/a('a+i used in EP.

The Major Fractions criterion, when applied to all the P potential

seats in a house of size P, takes on at most P distinct values; there

is a least positive difference e between unequal values of that criterion.
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(That least difference is the same in each succeeding block of P seats,

because each of the criteria is increased by 1.)

Since f(a)--*O as a--eo>, we can find x such that f(a)< e

whenever a.> x. For h large enough, all portions will exceed x, and

thereafter EP will duplicate a periodic sequence produced by MF.

The same argument shows that HM ultimately duplicates a period of

MF and (noting that the sequence of supereligible sets is also periodic)

that each of EPQ and HMQ must ultimately duplicate a periodic behavior of

MFQ.

Theorem 13: The periodic sequence of P gaining states which results when

LDM(c) is applied to a sequence of pure problems with population p may be

chosen to be the reverse of the sequence of gaining states resulting from

application of LDM(1-c) to the same pure problems.

Proof: It is only necessary to note that, if LDM(c) has given m seats

to state 1 and n seats to state 2, then the next gain~ing state is

chosen by comparing criteria like (m+c)/p 1 and (n+c)/P 2 ; while a descending

algorithm for LDM(1-c), which has withdrawn m seats from state I and

n seats from state 2 after beginning with the apportionment p at house

size P, will qeiect the next losing state by comparing (pj-m-1+(1-c))/pj

"" ith (P2.-n-1+(1-c))/P 2 ; but the former is equal to 1 - (m+c)/p 1 and the

latter to 1 - (n+c)/P 2 , so the ordering (when definite) will be reversed.

Since the ascending algorithm awards the next seat to the state whose
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criterion is least, while the descending algorithm withdraws the seat from

the state whose criterion is greatest, the downward sequence of losses in

LDMH(-c) can be chosen to duplicate the upward sequence of gains in LDM(c).

Corollary: The reverse of a valid P-se- for WF, which is LDM(1/2),

may be chosen as a valid P-sequence for the ame sequence of pure problems.

(We cannot say that a P-sequence for MF must be palindromic; that would be

obviously impossible if more than one of the pi were odd.)

Theorem 14: The sequence of gaining states in the ascending quota method

based on LDM(c) can be chosen to be identical with the sequence of losing

states in the descending quota analog of LDM(1-c), for pure problems.

Proof: Can be easily verified by checking the definitions of supereligible

sets, criteria, and quotas; the relation among those entities parallels

the relations of the preceding theorem.

Corollary: For the pure problem, the ascending quota method based on HF,

which is LDM(1/2), is identical with the descending quota method based

on WF. This quota method can thus be called the MFQ method.

Theorem 15: If LDM(c), or its quota analog, is applied to a sequence

of pure problems with one or more of the p1 = 1, those "singleton"

states will tend to get their single seat when the large states have

obtained the fraction c of their share of the first P seats.

Proof: The criterion, for the potential seat of a singleton state, will

be d(O)/1 = c; thus the singleton states will be nearly tied with a large

state (j, say) when the latter has received aj seats, where d(aj)/pj - c

nearly; but if pj is large, that implies aj is nearly c.pj.

0
11I1-23



111.7 Backtracking

As stated in Section 11.5, backtracking will be required (for some

problem-set) in every ascending quota method except PQ, and In every

descending quota method except DQ.

Table 111.2 shows examples of several such methods applied to the

pure problems with p = (1, 1, 5, 7). Note that the apportionment

(1, 1, 1, 2) satisfies quota but cannot be continued in the ascending

direction; the exact quota for h = 6 is (3/7, 3/7, 15/7, 3), so

both states 3 and 4 would have to gain the 6th seat In order to

satisfy quota. Therefore, we know that the apportionment (1, 1, 1, 2)

cannot result from any monotone solution satisfying quota.

The apportionment (0, 0, 4, 5), which Is complementary to the

above, also satisfies quota; however, this latter cannot be continued

in the descending direction because the exact quota for h = 8 is

(4/7, 4/7, 20/7, 4), so Doth states 3 and 4 would have to lose a

seat in order to satisfy quota. No monotone quota solution can pro-

duce (0, 0, 4, 5) either.

These examples show why it is necessary to find apportionments

for an entire problem-set (including all house sizes from h* to h*),

and not only for one or other of the intervals from h* to h, or from

r) h to h*; although (0, 0, 4, 5) is inaccessible to any ascending quota

algorithm, it may be found by certain descending quota algorithms --

in fact, it is found by descending GDQ -- though it must later be
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eliminated by a backtrack. (Our conjecture, Section 11.6, would imply

that the descending GDQ method is identical with ascending GDQ, which

is of course qi,.vpy the Primal Quota method PQ.)

Table 111.2 gives, for the pure problem set defined by p = (1, 1, 5, 7),

the apportionments generated by all five of Huntington's methods and by

their quota analogs. (Because of Theorems 10 and 11, we need only specify

apportionments for house sizes between 0 andZ Pi = 14 inclusive.).

We do not distinguish between the ascending and descending quota methods,

because we have no example where the resulting apportionments are different.

All the results of this table assume that ties are broken by selecting the

"first among equals" as the gaining state and the "last among equals" as the

losing state.

Although the apportionments (0, 0, 4, 5) and (1, 1, 1, 2) both

satisfy quota, and can each be reached by either an a.q. method or

a d.q. method but not both, neither of them can occur in a monotone quota

solution. We may ask whether there are apportionments satisfying quota

which cannot be reached by any quota algorithm. The answer is "yes";

there are, in fact, sets of apportionments ("enclaves") which cannot be

reached either from h* or from h*. A simple example is the apportion-

ment (0, 0, 2, 2) in the pure problem set with p = (3, 3, 4, 4); when

h = 3, the exact quotas are (9/14, 9/14, 6/7, 6/7), so that the 4'th

seat would have to be withdrawn from both states 3 and 4, and when

h = 5, the exact quotas are (15/14, 15/14, 10/7, 10/7), so that the

5'th seat would have to be given to both states 1 and 2.
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It is interesting to speculate on a possible maximum size of enclave

-- presumably depending on the number s of states and the population-

vector p for a pure problem, and also on the bounds r and b for a

constrained problem. Theorems to this effect could avoid the need to always

begin an a.q. algorithm with h. and a d.q. algorithm with h*.
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111.9 Non-Integral Populations

Many of the above theorems depend on the assumption that the population

vectors are integral, and would not be true if the pi were relatively

irrational. Actual census populations, of course, are always integers

-- even the original "three-fifths of a man" in the U.S. Constitution

resulting in rational population vectors -- but relative priorities, which

need not be rational fractions, may be used in some manpower-allocation

problems as a basis for apportionment of available men or spaces.

Those manpower problems, and other conceivable applications of these

apportionment methods, will almost always possess natural constraints r

and b, and the properties specified by those theorems will thus be of

lesser importance in those cases. Theorem 14 (which applies, that the

ascending MFQ and the descending MFQ methods are identical) does depend

on the integrality of p, but the loss of that theorem seems to be the

only practical consequence of using non-integral values in place of pop-

ulations p.

(From the mathematical standpoint, a pure problem with irrational p

would be almost-periodic in a well-defined sense, but that fact seems

to be irrelevant to any contemplated applications.)
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III.10 Recommendations

Because the periodicity seems an attractive and elegant notion, I

favor the use of a linear-divisor quota method for manpower allocation;

among these, MFQ would be ny first choice, because it is well-defined,

because it avoids the inconvenient ties when a distributable community

is slightly over-manned or slightly under-manned, and because the middle

seems like a good compromise. However, as stated in Section II above, DQ

ought to be used for the qualitative Phase IV.

Primarily on the grounds of mathematical elegance, I would favor the

same method for legislative apportionment. On the other hand, existing

legislation specifies EP -- so that the Congress might be more receptive

to EPQ than to MFQ. This would be especially true if it could be proven

that EPQ always agrees with EP, whenever the latter satisfies quota.

(That seems very likely, but has been so difficult to prove that I now

suspect the existence of rare counter-examples.) The difference between

EPQ and MFQ is likely to be miniscule; every state must have one repre-

sentative anyway, and even at a = 1 (i.e., when considering whether or

not a state gets its second seat), we find that EP gives d(1) 1= 1.414,

WF gives d(1) = 1.500 -- a difference of only 6%. Such small differences

as do Exist would tend to make EP favor the small states -- i.e., a

doubtful state is more likely to get its second seat with EP than with
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